Jump to main content

Archives

  1. Architectonique théorique en biologie et applications


    Si la physique, notamment la mécanique classique, a largement été mobilisée comme modèle de la compréhension théorique de la nature, la biologie a dans une certaine mesure, réussi à s'en détacher avec la théorie de l'évolution, une théorie où l'historicité est première. Néanmoins, cette innovation épistémologique et méthodologique n'est pas miscible avec la méthode de théorisation physique et il s'ensuit une étrange cohabitation dont les enjeux sont rarement traités. Nous proposerons des directions pour repenser la théorisation en biologie en insistant sur le concept de nouveau possible. Nous montrerons aussi que ce travail permet de mieux comprendre des phénomènes biologiques cruciaux : la disruption des organisations biologique dans l'Anthropocène.

  2. Plaine Commune, contributive learning territory

    Memories for the Future: Thinking with Bernard Stiegler


    The contributive economy is a strategy to disrupt technological disruption by developing knowledge in all its forms. This program has led to several concrete working groups in Plaine Commune.

    Abstract

    The program Plaine Commune, contributive learning territory, started in late 2016. It emerged from the theoretical work of Bernard Stiegler and the Ars Industrialis group. The contributive economy is a strategy to disrupt technological disruption by developing knowledge in all its forms. This program has led to several concrete working groups in Plaine Commune, while others are still developing. Mainly, work is taking place on the economy, digital urbanism, and young children’s development in the context of the overuse of digital media. Here, we focus on the group on digital media and young children’s development and how academics and inhabitant works integrate.

    Citation
    Montévil, Maël. 2023. “Plaine Commune, Contributive Learning Territory.” In Memories for the Future: Thinking with Bernard Stiegler, edited by Bart Buseyne, Georgios Tsagdis, and Paul Willemarck
    Manuscript Citation Full text
  3. Normativité et infidélités du milieu : actualités biologiques de Canguilhem

    Normativité et infidélités du milieu : actualités biologiques de Canguilhem

    La philosophie et ses dehors


    Quelques remarques sur la pertinence de la philosophie de Canguilhem sur les enjeux contemporains, de la medecine par la preuve à la disruption des organisations biologiques.

    Citation
    Montévil, Maël. 2023. “Normativité et Infidélités Du Milieu : Actualités Biologiques de Canguilhem.” In La Philosophie et Ses Dehors. Centre Lauragais d’Études Scientifiques
    Manuscript Citation Full text
  4. Modeling organogenesis from biological first principles

    Modeling organogenesis from biological first principles

    Organization in Biology: Foundational Enquiries into a Scientific Blindspot


    Here we discuss the application and articulation of biological principles for mathematical modeling of morphogenesis in the case of mammary ductal morphogenesis, with an emphasis on the default state.

    Abstract

    Unlike inert objects, organisms and their cells have the ability to initiate activity by themselves, and thus change their properties or states even in the absence of an external cause. This crucial difference led us to search for principles suitable for the study organisms. We propose that cells follow the default state of proliferation with variation and motility, a principle of biological inertia. This means that in the presence of sufficient nutrients, cells will express their default state. We also propose a principle of variation that addresses two central features of organisms, variation and historicity. To address interdependence between parts, we use a third principle, the principle of organization: more specifically, the notion of the closure of constraints. Within this theoretical framework, constraints are specific theoretical entities defined by their relative stability with respect to the processes they constrain. Constraints are mutually dependent in an organized system and act on the default state.
    Here we discuss the application and articulation of these principles for mathematical modeling of morphogenesis in a specific case, that of mammary ductal morphogenesis, with an emphasis on the default state. Our model has both a biological component, the cells, and a physical component, the matrix that contains collagen fibers. Cells are agents that move and proliferate unless constrained; they exert mechanical forces that i) act on collagen fibers and ii) on other cells. As fibers are organized, they constrain the cells’ ability to move and to proliferate. This model exhibits a circularity that can be interpreted in terms of the closure of constraints. Implementing our mathematical model shows that constraints to the default state are sufficient to explain the formation of mammary epithelial structures. Finally, the success of this modeling effort suggests a step-wise approach whereby additional constraints imposed by the tissue and the organism can be examined in silico and rigorously tested by in vitro and in vivo experiments, in accordance with the organicist perspective we embrace.

    Citation
    Montévil, Maël, and Ana Soto. 2023. “Modeling Organogenesis from Biological First Principles.” In Organization in Biology: Foundational Enquiries into a Scientific Blindspot, edited by Matteo Mossio. Springer Nature
    Manuscript Citation Full text
  5. How does randomness shape the living?

    How does randomness shape the living?

    Figures of Chance


    In biology, randomness is a critical notion to understand variations; however this notion is typically not conceptualized precisely. Here we provide some elements in that direction.

    Abstract

    Physics has several concepts of randomness that build on the idea that the possibilities are pre-given. By contrast, an increasing number of theoretical biologists attempt to introduce new possibilities, that is to say, changes of possibility space – an idea already discussed by Bergson and that was not genuinely pursued scientifically until recently (except, in a sense, in systematics, i.e, the method to classify living beings).
    Then, randomness operates at the level of possibilities themselves and is the basis of the historicity of biological objects. We emphasize that this concept of randomness is not only relevant when aiming to predict the future. Instead, it shapes biological organizations and ecosystems. As an illustration, we argue that a critical issue of the Anthropocene is the disruption of the biological organizations that natural history has shaped, leading to a collapse of biological possibilities.

    Citation
    Montévil, Maël. 2023. “How Does Randomness Shape the Living?” In Figures of Chance, edited by Anne Duprat and others
    Manuscript Citation Full text
  6. Organisation du Vivant, Organologie des Savoirs : Technodiversité, biodiversité, noodiversité : nouveaux régimes de l’habiter

    • G Longo
      G Longo
      ,
      V Loubière
      V Loubière
      ,
      M Montévil
      M Montévil
      &
      V Puig
      V Puig
      .
    • fr
    • Centre Pompidou

    Pour repenser l’anthropos à lumière de l’entropocène, nous proposons de revenir aux racines philosophiques et historiques ou, en d’autres termes, à une épistémologie historique qui permette d’exercer une critique de l’alliance qui s’est construite, au cours d’un siècle et à partir d’une pensée scientifique emprise de mécanicisme, entre un nouveau scientisme, la technoscience du numérique, et les formes contemporaines de la gouvernance. En s’appuyant sur des notions floues d’information et de programme génétiques, aux conséquences fortes, on a produit une technoscience qui déborde aujourd’hui sur le vivant. Dans le même temps, les développements technologiques issus des révolutions industrielles successives désorganisent profondément le vivant, conduisant à ce qui est couramment appelé la sixième extinction de masse de l’histoire de la Terre, appelant une réforme du rapport entre technologie et vivant. De nombreuses études critiques font état du rôle politique des nouvelles technologies du numérique, dans ses deux développements les plus importants, l’informatique et l’intelligence artificielle, et dans leurs conséquences pour la compréhension du vivant. Les réseaux informatiques permettent une centralisation nouvelle de l’information, voire la gestion des activités humaines par des monopoles privés et par des gouvernements aux ambitions autoritaires croissantes. Des machines nous reconnaissent et nous suivent, proposent des réponses à des questions mal posées, en raison du formatage programmé qui précède et canalise nos pensées, nos actions et nos désirs. Numérique et biologique constituent aujourd’hui le nouveau milieu noétique dont nous devons prendre soin.

  7. Qu’appelle-t-on disruption en biologie?


    Le terme de disruption est utilisé largement en biologie, mais il a été peu théorisé. Qu'est ce qui distingue les disruptions des perturbations ou du concept très générique de "disturbances" en écologie? Nous défendrons l'idée que les disruptions demandent de comprendre le vivant à la fois dans son historicité et de manière systémique. Au cours du temps, notamment évolutif, le vivant se transforme et fait apparaître des traits singuliers, qui sont fonctionnels grâce à leurs singularités. Ceci constitue ce que nous avons appelé par ailleurs l'anti-entropie. Alors le premier type de disruption est la randomisation de cette singularité, conduisant à une perte de viabilité, qu'il s'agit toutefois de définir avec précision. Il y a cependant un deuxième type de disruption. Si le premier type correspond à la perte du résultat de l'histoire constituant une organisation, le deuxième type correspond à la perte de la capacité à produire des nouveautés fonctionnelles. Dans les deux cas, les disruptions sont un aspect essentiellement qualitatif de l’Anthropocène et de ce qui atteint à la fois la biodiversité et la santé humaine.

  8. Modeling organogenesis from biological first principles


    The Qbio initiative at Institut Pasteur is organising a two-day symposium in Paris on December 12th and 13th 2022 which will cover the interplay between mechanics, evolution, morphogenesis and development. This symposium is meant to be an open platform for discussion between physicists, mathematicians and biologists on relevant biological questions, and to foster interactions between topics/systems which normally have few occasions to interact.

Filter by year to see more archives.