Jump to main content

Archives of 2025

  1. How does randomness shape the living?

    How does randomness shape the living?

    Figures of chance II chance in theory and practice


    In biology, randomness is a critical notion to understand variations; however this notion is typically not conceptualized precisely. Here we provide some elements in that direction.

    Abstract

    Physics has several concepts of randomness that build on the idea that the possibilities are pre-given. By contrast, an increasing number of theoretical biologists attempt to introduce new possibilities, that is to say, changes of possibility space – an idea already discussed by Bergson and that was not genuinely pursued scientifically until recently (except, in a sense, in systematics, i.e, the method to classify living beings). <br> Then, randomness operates at the level of possibilities themselves and is the basis of the historicity of biological objects. We emphasize that this concept of randomness is not only relevant when aiming to predict the future. Instead, it shapes biological organizations and ecosystems. As an illustration, we argue that a critical issue of the Anthropocene is the disruption of the biological organizations that natural history has shaped, leading to a collapse of biological possibilities.

    Citation
    Montévil, Maël. 2025. “How Does Randomness Shape the Living?” In Figures of Chance II Chance in Theory and Practice, edited by Anne Duprat, Alison James, and Divya Dwivedi. Taylor & Francis
    Manuscript Citation Full text
  2. Extension du domaine de soin


    Ce séminaire a pour vocation de constituer un espace de réflexion et de discussion autour des textes de l’œuvre publiée et des archives non publiées disponibles au fonds CAPHÉS. Creusant le sillon de la journée d’étude sur les inédits de Canguilhem, ces rencontres permettront une analyse détaillée et approfondie de l’ensemble de l’œuvre canguilhémienne, au-delà de la seule thèse princeps (Le Normal et le pathologique). Il s’agit à la fois de faire connaître et approfondir de manière graduelle l’œuvre canguilhémienne, tout en nouant des liens avec ses autres écrits et les pensées avec lesquelles il entre en dialogue ou lorsque ce n’est pas le cas recueillir les échos, que ses idées rencontrent chez d’autres penseurs et chez d’autres disciplines.

  3. Quelques défis théoriques et épistémologiques entre biologie et conception orientée milieu


    La biologie théorique contemporaine prend en charge et renouvelle certaines questions fondamentales : notamment la question de l’historicité et la question des niveaux d’organisation – ainsi que le sens accordé à ce dernier terme. Nous présenterons certaines avancées dans ce domaine qui recoupent les questionnements et les défis rencontrés dans la conception orientée milieu.

  4. Disruption of biological processes in the anthropocene: The case of phenological mismatch

    Disruption of biological processes in the anthropocene: The case of phenological mismatch

    Acta Biotheoretica


    Biologists are increasingly documenting anthropogenic disruptions, both at the organism and ecosystem levels, indicating that these disruptions are a fundamental, qualitative component of the Anthropocene.

    Abstract

    Biologists increasingly report anthropogenic disruptions of both organisms and ecosystems, suggesting that these processes are a fundamental, qualitative component of the Anthropocene crisis, seemingly generating disorder. Nonetheless, the notion of disruption has not yet been theorized as such in biology. To progress on this matter, we build on a specific case. Relatively minor temperature changes disrupt plant-pollinator synchrony, tearing apart the web of life. Understanding this phenomenon requires a specific rationale since models describing them use both historical and systemic reasoning. Specifically, history justifies that the system is initially in a narrow part of the possibility space where it is viable, and the disruption randomizes this configuration. Building on this rationale, we develop a formal framework inspired by Boltzmann’s entropy. This framework defines the randomization of the system and leads to analyze its consequences systematically. Notably, maximum randomization does not lead to the complete collapse of the ecosystem. Moreover, pollinators’ robustness mostly increases viability for low randomizations, while resilience enhances viability after high randomizations. Applying this framework to empirical networks, we show historical trends depending on latitude, providing further evidence of climate change’s impact on ecosystems via phenology changes. These results lead to an initial definition of disruption in ecology. When a specific historical outcome contributes to a system’s viability, disruption is the randomization of this outcome, decreasing this viability.

  5. Towards a new industrial revolution? Entropy and its challenges

    Towards a new industrial revolution? Entropy and its challenges

    Technophany, A Journal for Philosophy and Technology


    Below is a podcast and transcript of the interview concerning the 1st chapter of the book Bifurquer

    Abstract

    This is a transcribed and translated  a podcast of the interview concerning the 1st chapter of the book Biurquer: Il n’y a pas d’alternative (Bifurcate: There Is No Alternative) on the scientific, technological and political stakes of the notion of entropy. The discussion took place between Bernard Stiegler, Maël Montévil, Marie Chollat-Namy and Victor Chaix, on the 1st of July 2020.

    Citation
    Stiegler, Bernard, Maël Montevil, Victor Chaix, and Marie Chollat-Namy. 2025. “Towards a New Industrial Revolution? Entropy and Its Challenges.” Edited by Joel White. Technophany, A Journal for Philosophy and Technology 2 (2): 1–28. https://doi.org/10.54195/technophany.19608
    Manuscript Citation Publisher Full text