Jump to main content

  1. How does randomness shape the living?

    How does randomness shape the living?

    Figuring Chance: Questions of Theory

    In biology, randomness is a critical notion to understand variations; however this notion is typically not conceptualized precisely. Here we provide some elements in that direction.


    Physics has several concepts of randomness that build on the idea that the possibilities are pre-given. By contrast, an increasing number of theoretical biologists attempt to introduce new possibilities, that is to say, changes of possibility space – an idea already discussed by Bergson and that was not genuinely pursued scientifically until recently (except, in a sense, in systematics, i.e, the method to classify living beings).
    Then, randomness operates at the level of possibilities themselves and is the basis of the historicity of biological objects. We emphasize that this concept of randomness is not only relevant when aiming to predict the future. Instead, it shapes biological organizations and ecosystems. As an illustration, we argue that a critical issue of the Anthropocene is the disruption of the biological organizations that natural history has shaped, leading to a collapse of biological possibilities.

    Montévil, Maël. n.d. “How Does Randomness Shape the Living?” In Figuring Chance: Questions of Theory, edited by Anne Duprat and others. Routledge
    Manuscript Citation Full text
  2. Conceptual and Theoretical Specifications for Accuracy in Medicine

    Conceptual and Theoretical Specifications for Accuracy in Medicine

    Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare

    We question some aspects of medicine from the perspective of theoretical biology, on the one hand, and the technological and social dimension of health and disease on the other hand.


    Technological developments in genomics and other -omics originated the idea that precise measurements would lead to better therapeutic strategies. However, precision does not entail accuracy. Scientific accuracy requires a theoretical framework to understand the meaning of measurements, the nature of causal relationships, and potential intrinsic limitations of knowledge. For example, a precise measurement of initial positions in classical mechanics is useless without initial velocities; it is not an accurate measurement of the initial condition. Conceptual and theoretical accuracy is required for precision to lead to the progress of knowledge and rationality in action. In the search for accuracy in medicine, we first outline our results on a theory of organisms. Biology is distinct from physics and requires a specific epistemology. In particular, we develop the meaning of biological measurements and emphasize that variability and historicity are fundamental notions. However, medicine is not just biology; we articulate the historicity of biological norms that stems from evolution and the idea that patients and groups of patients generate new norms to overcome pathological situations. Patients then play an active role, in line with the philosophy of Georges Canguilhem. We argue that taking this dimension of medicine into account is critical for theoretical accuracy.

    Keywords: Normativity, Organization, Personalized Medicine, Technology, theoretical biology

    Montévil, Maël. 2022. “Conceptual and Theoretical Specifications for Accuracy in Medicine.” In Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare, edited by Chiara Beneduce and Marta Bertolaso, 47–62. Human Perspectives in Health Sciences et Technology. Springer International Publishing. https://doi.org/10.1007/978-3-030-74804-3_3
    Manuscript Citation Publisher Full text