Jump to main content

Publications

  1. Entropies and the Anthropocene crisis

    AI and society


    The contemporary Anthropocene crisis is frequently described as the rarefaction of resources or resources per capita. However, both energy and minerals correspond to fundamentally conserved quantities from a physical perspective. A specific concept is required to understand the rarefaction of these...

    Manuscript Citation Details

    Abstract:

    The contemporary Anthropocene crisis is frequently described as the rarefaction of resources or resources per capita. However, both energy and minerals correspond to fundamentally conserved quantities from a physical perspective. A specific concept is required to understand the rarefaction of these resources. This concept, entropy, pertains to the configurations of energy and matter and not just to their sheer amount. However, the physical concept of entropy is insufficient to understand biological and social organizations. Biological phenomena display both historicity and more synchronic, systemic properties. The concept of anti-entropy stems from the combination of these aspects. We propose that many vulnerabilities of living entities to the changes of the Anthropocene pertain to anti-entropy. They correspond to the entropization of anti-entropy, that is, a loss of organization. They can also be the disruption of anti-entropy production, that is to say, the loss of the ability to produce functional novelties.

    Keywords: entropy, anti-entropy, resources, organization, disruption, Anthropocene

    Citation:

    Montévil, Maël. n.d. “Entropies and the Anthropocene Crisis.” AI and Society

  2. Conceptual and theoretical specifications for accuracy in medicine

    Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare


    Technological developments in genomics and other -omics originated the idea that precise measurements would lead to better therapeutic strategies. However, precision does not entail accuracy. Scientific accuracy requires a theoretical framework to understand the meaning of measurements, the nature...

    Manuscript Citation Full text

    Abstract:

    Technological developments in genomics and other -omics originated the idea that precise measurements would lead to better therapeutic strategies. However, precision does not entail accuracy. Scientific accuracy requires a theoretical framework to understand the meaning of measurements, the nature of causal relationships, and potential intrinsic limitations of knowledge. For example, a precise measurement of initial positions in classical mechanics is useless without initial velocities; it is not an accurate measurement of the initial condition. Conceptual and theoretical accuracy is required for precision to lead to the progress of knowledge and rationality in action. In the search for accuracy in medicine, we first outline our results on a theory of organisms. Biology is distinct from physics and requires a specific epistemology. In particular, we develop the meaning of biological measurements and emphasize that variability and historicity are fundamental notions. However, medicine is not just biology; we articulate the historicity of biological norms that stems from evolution and the idea that patients and groups of patients generate new norms to overcome pathological situations. Patients then play an active role, in line with the philosophy of Georges Canguilhem. We argue that taking this dimension of medicine into account is critical for theoretical accuracy.

    Keywords: Normativity, Organization, Personalized Medicine, Technology, theoretical biology

    Citation:

    Montévil, Maël. n.d. “Conceptual and Theoretical Specifications for Accuracy in Medicine.” In Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare. Springer; Springer

  3. Le sens des formes en biologie

    Le sens des formes en biologie

    Biomorphisme


    Dans l’interface entre biologie et mathématiques, les formes et les processus de morphogenèse sont souvent étudiées pour eux-mêmes. Nous pensons que cette manière de procéder est insuffisante pour capturer le sens biologique de ces formes. La biologie comporte des spécificités qui se manifestent...

    Manuscript Citation Full text

    Abstract:

    Dans l’interface entre biologie et mathématiques, les formes et les processus de morphogenèse sont souvent étudiées pour eux-mêmes. Nous pensons que cette manière de procéder est insuffisante pour capturer le sens biologique de ces formes. La biologie comporte des spécificités qui se manifestent tant sur le plan philosophique que sur celui des principes théoriques : en particulier, tout processus biologique tel qu’un processus de morphogenèse ou une régulation physiologique (i) s’inscrit dans l’évolution et dans une histoire naturelle et (ii) s’intègre dans un organisme dont il dépend et auquel il participe. Nous aborderons alors le sens des formes biologiques à l’aune de ces principes, tant au niveau de la théorie qu’au niveau de la compréhension de l’accès expérimental aux objets biologiques.

    Citation:

    Montévil, Maël. n.d. “Le Sens Des Formes En Biologie.” In Biomorphisme. NAIMA

  4. Sciences et entropocène. Autour de Qu’appelle-t-on panser ? de Bernard Stiegler

    Sciences et entropocène. Autour de Qu’appelle-t-on panser ? de Bernard Stiegler

    EcoRev’


    Bernard Stiegler soulignait l’importance de la question de l’entropie, conduisant au concept d’entropocène. L’auteur introduit et illustre ce concept pour montrer sa pertinence d’un point de vue physique, biologique et social.

    Manuscript Citation Publisher Full text

    Abstract:

    En examinant le second tome de Qu’appelle-t-on panser (1), le théoricien de la biologie et épistémologue Maël Montévil, qui a collaboré avec Bernard Stiegler à la fois sur des questions théoriques et sur des expérimentations territoriales, s’arrête sur le rôle des sciences dans l’Anthropocène pour souligner leur difficulté à penser cette ère et, ce faisant, à prendre soin des vivants, humains et non-humains, des techniques et des sciences elles-mêmes. Stiegler soulignait l’importance de la question de l’entropie, conduisant au concept d’entropocène. L’auteur introduit et illustre ce concept pour montrer sa pertinence d’un point de vue physique, biologique et social. Ce faisant, il insiste sur la parenté mais aussi sur les différences entre ces phénomènes. Dans le cas des humains, les savoirs jouent un rôle central pour lutter contre l’entropie, et les sciences pourraient retrouver leur compte en contribuant au développement – urgent – de savoirs territoriaux.

    Citation:
  5. Code for: Disruption of biological processes in the Anthropocene: the case of phenological mismatch

    Code for: Disruption of biological processes in the Anthropocene: the case of phenological mismatch


    CRAN R code to analyze disruption of plant-pollinator networks for the article: Disruption of biological processes in the Anthropocene: the case of phenological mismatch.

    Citation Publisher Details

    Abstract:

    CRAN R code to analyze disruption of plant-pollinator networks for the article: Disruption of biological processes in the Anthropocene: the case of phenological mismatch

    Citation:
  6. From physics to biology by extending criticality and symmetry breakings: An update

    From physics to biology by extending criticality and symmetry breakings: An update

    Acta Europeana Systemica


    We introduce our theoretical analysis in biology and show that symmetries play a radically different role in this discipline, by comparison with physics.

    Manuscript Citation Publisher Full text

    Abstract:

    Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not “just” processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), qualitative variability is at the core of these transitions.

    Keywords: Coherent structures, Critical transitions, downward causation, Hidden variables, Levels of organization, Symmetries, Systems biology

    Citation:

    Longo, Giuseppe, and Maël Montévil. 2020. “From Physics to Biology by Extending Criticality and Symmetry Breakings: An Update.” Acta Europeana Systemica 9 (1): 77–92. https://doi.org/10.14428/aes.v9i1.56043

  7. Historicity at the heart of biology

    Historicity at the heart of biology

    Theory in Biosciences


    Most mathematical modeling in biology rely on the epistemology of physics. By contrast, we argue that historicity comes first in biology.

    Manuscript Citation Publisher Full text

    Abstract:

    Most mathematical modeling in biology relies either implicitly or explicitly on the epistemology of physics. The underlying conception is that the historicity of biological objects would not matter to understand a situation here and now, or, at least, historicity would not impact the method of modeling. We analyze that it is not the case with concrete examples. Historicity forces a conceptual reconfiguration where equations no longer play a central role. We argue that all observations depend on objects defined by their historical origin instead of their relations as in physics. Therefore, we propose that biological variations and historicity come first, and regularities are constraints with limited validity in biology. Their proper theoretical and empirical use requires specific rationales.

    Keywords: Historicity, Organization, Epistemology, Mathematical modeling, Constraints

    Citation:

    Montévil, Maël. 2020. “Historicity at the Heart of Biology.” Theory in Biosciences, July. https://doi.org/10.1007/s12064-020-00320-8

  8. The Identity of Organisms in Scientific Practice: Integrating Historical and Relational Conceptions

    The Identity of Organisms in Scientific Practice: Integrating Historical and Relational Conceptions

    Frontiers in Physiology


    We address the identity of biological organisms in scientific practices by combining historical and relational, organizational conceptions.

    Manuscript Citation Publisher Full text

    Abstract:

    We address the identity of biological organisms at play in experimental and modeling practices. We first examine the central tenets of two general conceptions, and we assess their respective strengths and weaknesses. The historical conception, on the one hand, characterizes organisms’ identity by looking at their past, and specifically at their genealogical connection with a common ancestor. The relational conception, on the other hand, interprets organisms’ identity by referring to a set of distinctive relations between their parts, and between the organism and its environment. While the historical and relational conceptions are understood as opposed and conflicting, we submit that they are also fundamentally complementary. Accordingly, we put forward a hybrid conception, in which historical and relational (and more specifically, organizational) aspects of organisms’ identity sustain and justify each other. Moreover, we argue that organisms’ identity is not only hybrid but also bounded, insofar as the compliance with specific identity criteria tends to vanish as time passes, especially across generations. We spell out the core conceptual framework of this conception, and we outline an original formal representation. We contend that the hybrid and bounded conception of organisms’ identity suits the epistemological needs of biological practices, particularly with regards to the generalization and reproducibility of experimental results, and the integration of mathematical models with experiments.

    Citation:
  9. Anthropocène, exosomatisation et néguentropie

    Anthropocène, exosomatisation et néguentropie

    Bifurquer. Il n’y a pas d’alternative


    L’économie industrielle a pris forme entre la fin du XVIIIe siècle et le XIXe siècle – d’abord en Europe occidentale puis en Amérique du Nord. Outre les productions techniques, elle aura conduit à des productions technologiques – mobilisant des sciences pour produire des biens industriels – : comme...

    Citation Publisher Details

    Abstract:

    L’économie industrielle a pris forme entre la fin du XVIIIe siècle et le XIXe siècle – d’abord en Europe occidentale puis en Amérique du Nord. Outre les productions techniques, elle aura conduit à des productions technologiques – mobilisant des sciences pour produire des biens industriels – : comme Marx l’aura montré en 1857, le capitalisme fait du savoir et de sa valorisation économique son élément premier.
    La physique de Newton et la métaphysique qui l’accompagne sont à l’origine du cadre épistémique (au sens de Michel Foucault) et épistémologique (au sens de Gaston Bachelard) de cette grande transformation – qui est la condition de ce que Karl Polanyi appellera lui-même « la grande transformation ». Dans cette transformation, l’otium (le temps de loisirs productifs) se soumet au negotium (les affaires du monde). Pendant ce temps, les mathématiques sont appliquées à travers des machines à calculer toujours plus puissantes et performatives – appelées computers après la deuxième guerre mondiale.
    Après des précurseurs tels que Nicholas Georgescu-Roegen, lui-même inspiré par Alfred Lotka, nous soutiendrons dans le présent ouvrage que l’économie politique, dans ce qui est appelé l’ère Anthropocène (thématisée en 2000 par Paul Krutzen, et dont les caractéristiques ont été décrites par Vladimir Vernadsky dès 19263) est un défi qui nécessite un réexamen fondamental de ces cadres épistémiques et épistémologiques.
    Avec Darwin, les êtres vivants sont devenus partie intégrante d’un processus historique en constant devenir. Chez l’homme, les savoirs sont une partie de ce processus qui est performative, au double sens de ce mot : à la fois au sens de l’efficience et au sens de la prescription. Ce processus devient exosomatique, c’est à dire extra-corporel, comme le montre Lotka, qui façonne et remodèle les modes de vie afin, notamment, de limiter les effets négatifs des nouveautés techniques.

    Citation:

    Montévil, Maël, Bernard Stiegler, Giuseppe Longo, Ana M. Soto, and Carlos Sonnenschein. 2020. “Anthropocène, Exosomatisation et Néguentropie.” In Bifurquer. Il n’y a Pas d’alternative, 57–80. Les liens qui libèrent. http://www.editionslesliensquiliberent.fr/livre-Bifurquer-609-1-1-0-1.html

  10. Anthropocene, exosomatization and negentropy

    Anthropocene, exosomatization and negentropy

    On transition : in response to Antonio Guterres


    After precursors such as Nicholas Georgescu-Roegen, himself inspired by Alfred Lotka, we maintain that political economy in what is now called the Anthropocene is a challenge that requires a fundamental reconsideration of epistemology.

    Manuscript Citation Publisher Full text

    Abstract:

    The industrial economy took shape between the late eighteenth century and the nineteenth century, initially in Western Europe and then in North America. Besides technical production, it involves technological production – the integration of sciences in order to produce indus-trial goods –, to the strict extent that, as Marx showed, capitalism makes knowledge and its economic valorization its primary element.
    Newton’s physics and the metaphysics that goes with it originated the epistemic (in Michel Foucault’s sense) and epistemological (in Gaston Bachelard’s sense) framework of this great transformation. In this transformation, otium (productive leisure time) submits to negotium (worldly affairs, business). All along, mathematics has been applied with ever more powerful and performative calculating machines.
    After precursors such as Nicholas Georgescu-Roegen, himself inspired by Alfred Lotka, we maintain that political economy in what is now called the Anthropocene (whose features were delineated by Vladimir Vernadsky in 1926) is a challenge that requires a fundamental reconsideration of these epistemic frameworks and epistemological frameworks. With Dar-win, living beings became part of a historical process of becoming. In humans, knowledge is a performative part of this process that shapes and reshapes lifestyles in order to tame the im-pact of technical novelties.

    Citation:

    Montévil, Maël, Bernard Stiegler, Giuseppe Longo, Ana M. Soto, and Carlos Sonnenschein. 2020. “Anthropocene, Exosomatization and Negentropy.” In On Transition : In Response to Antonio Guterres. https://internation.world/

Filter by year to see more publications.