Jump to main content

Computational empiricism : the reigning épistémè of the sciences

Philosophy World Democracy

What do mainstream scientists acknowledge as original scientific contributions, that is, what is the current épistémè in natural sciences?

Abstract

What do mainstream scientists acknowledge as original scientific contributions? In other words, what is the current épistémè in natural sciences? This essay attempts to characterize this épistémè as computational empiricism. Scientific works are primarily empirical, generating data and computational, to analyze them and reproduce them with models. This épistémè values primarily the investigation of specific phenomena and thus leads to the fragmentation of sciences. It also promotes attention-catching results showing limits of earlier theories. However, it consumes these theories since it does not renew them, leading more and more fields to be in a state of theory disruption.

Keywords: theory, statistical tests, empiricism, models, computation


Computational empiricism : the reigning épistémè of the sciences

Maël Montévil

Abstract

What do mainstream scientists acknowledge as original scientific contributions? In other words, what is the current épistémè in natural sciences? This essay attempts to characterize this épistémè as computational empiricism. Scientific works are primarily empirical, generating data and computational, to analyze them and reproduce them with models. This épistémè values primarily the investigation of specific phenomena and thus leads to the fragmentation of sciences. It also promotes attention-catching results showing limits of earlier theories. However, it consumes these theories since it does not renew them, leading more and more fields to be in a state of theory disruption.

keywords: Philosophy, science


Free access on the journal website.

Magritte, Le Bon sens
Magritte, Le Bon sens, 1945. Credit: Fotki.

References

  1. Amrhein, V., S. Greenland, B. McShane, and 800 signatories (2019). “Scientists rise up against statistical significance”. In: Nature 567, pp. 305–307. doi: 10.1038/d41586- 019-00857-9.
  2. Anderson, C. (2008). “The end of theory: The data deluge makes the scientific method obsolete”. In: Wired magazine 16.7, pp. 16–07.
  3. Bailly, F. and G. Longo (2011). Mathematics and the natural sciences; The Physical Singularity of Life. London: Imperial College Press. doi: 10.1142/p774.
  4. Baker, M. (2016). “1,500 scientists lift the lid on reproducibility”. In: Nature 533, pp. 452–454. doi: 10.1038/533452a.
  5. Bouleau, N. (2021). Ce que Nature sait: La révolution combinatoire de la biologie et ses dangers. Presses Universitaires de France.
  6. Canguilhem, G. (1972). Le normal et le pathologique. Paris: Presses Universitaires de France.
  7. Heisenberg, W. (1971). Physics and Beyond. New York: Harper.
  8. Hodgkin, A. L. and A. F. Huxley (1952). “A quantitative description of membrane current and its application to conduction and excitation in nerve”. In: The Journal of physiology 117.4, pp. 500–544.
  9. Kitano, H. (Apr. 2016). “Artificial Intelligence to Win the Nobel Prize and Beyond: Creating the Engine for Scientific Discovery”. In: AI Magazine 37.1, pp. 39–49. doi: 10.1609/aimag.v37i1.2642.
  10. Kitano, H. (June 2021). “Nobel Turing Challenge: creating the engine for scientific discovery”. In: npj Systems Biology and Applications 7.1, p. 29. issn: 2056-7189. doi: 10.1038/s41540-021-00189-3.
  11. Kragh, H. (2000). “Max Planck: the reluctant revolutionary”. In: Physics World.
  12. Longo, G. (2019). “Letter to Turing”. In: Theory, Culture & Society 36.6, pp. 73–94. doi: 10.1177/0263276418769733.
  13. McConway, K. (2012). “Understanding uncertainty: ESP and the significance of significance”. In: Plus magazine.
  14. Meadows, A. (1985). “The scientific paper as an archaeological artefact”. In: Journal of Information Science 11.1, pp. 27–30. doi: 10.1177/016555158501100104.
  15. Medawar, P. (Aug. 1964). “Is the Scientific Paper Fraudulent?” In: The Saturday Review.
  16. Montévil, M. (In Press). “Conceptual and theoretical specifications for accuracy in medicine”. In: Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare. Ed. by C. Beneduce and M. Bertolaso. Human Perspectives in Health Sciences and Technology. Springer. isbn: 9783030748036.
  17. Montévil, M., L. Speroni, C. Sonnenschein, and A. M. Soto (Aug. 2016). “Modeling mammary organogenesis from biological first principles: Cells and their physical constraints”. In: Progress in Biophysics and Molecular Biology 122.1, pp. 58–69. issn: 0079-6107. doi: 10.1016/j.pbiomolbio.2016.08.004.
  18. Muthukrishna, M. and J. Henrich (Mar. 2019). “A problem in theory”. In: Nature Human Behaviour 3.3, pp. 221–229. issn: 2397-3374. doi: 10.1038/s41562-018-0522-1.
  19. O’Connor, M. I., M. W. Pennell, F. Altermatt, B. Matthews, C. J. Melián, and A. Gonzalez (2019). “Principles of Ecology Revisited: Integrating Information and Ecological Theories for a More Unified Science”. In: Frontiers in Ecology and Evolution 7, p. 219. issn: 2296-701X. doi: 10.3389/fevo.2019.00219.
  20. Peterson, J. C., D. D. Bourgin, M. Agrawal, D. Reichman, and T. L. Griffiths (2021). “Using large-scale experiments and machine learning to discover theories of human decision-making”. In: Science 372.6547, pp. 1209–1214. issn: 0036-8075. doi: 10.1126/ science.abe2629.
  21. Soto, A. M., G. Longo, D. Noble, N. Perret, M. Montévil, C. Sonnenschein, M. Mossio, A. Pocheville, P.-A. Miquel, and S.-Y. Hwang (Oct. 2016). “From the century of the genome to the century of the organism: New theoretical approaches”. In: Progress in Biophysics and Molecular Biology, Special issue 122.1, pp. 1–82.
  22. Stiegler, B. (2018). Automatic society: The future of work. John Wiley & Sons.
  23. Stiegler, B. (2019). The Age of Disruption: Technology and Madness in Computational Capitalism. Cambridge, UK: Polity Press. isbn: 9781509529278.
  24. Teytelman, L. (2018). “No more excuses for non-reproducible methods.” In: Nature 560, p. 411. doi: 10.1038/d41586-018-06008-w.
  25. Turing, A. M. (1950). “Computing machinery and intelligence”. In: Mind 59.236, pp. 433–460.
  26. Turing, A. M. (1952). “The Chemical Basis of Morphogenesis”. In: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237.641, pp. 37–72. doi: 10.1098/rstb.1952.0012.
  27. Wasserstein, R. L. and N. A. Lazar (2016). “The ASA Statement on p-Values: Context, Process, and Purpose”. In: The American Statistician 70.2, pp. 129–133. doi: 10.1080/ 00031305.2016.1154108.
  28. Wilkinson, M. (May 2013). “Testing the null hypothesis: The forgotten legacy of Karl Popper?” In: Journal of Sports Sciences 31.9, pp. 919–920. doi: 10.1080/02640414. 2012.753636.
  29. Wu, J. (Dec. 2011). “Improving the writing of research papers: IMRAD and beyond”. In: Landscape Ecology 26.10, pp. 1345–1349. issn: 1572-9761. doi: 10.1007/s10980-011- 9674-3.