Jump to main content

Contents tagged “biological causality”

There are 2 contents with the tag “biological causality”:

  1. Extended criticality, phase spaces and enablement in biology

    Extended criticality, phase spaces and enablement in biology

    Chaos, Solitons & Fractals

    Biological evolution entails continual changes of the pertinent phase space, leading to unpredictability. We discuss causality as enablement by constraints.


    This paper analyzes, in terms of critical transitions, the phase spaces of biological dynamics. The phase space is the space where the scientific description and determination of a phenomenon is given. We argue that one major aspect of biological evolution is the continual change of the pertinent phase space and the unpredictability of these changes. This analysis will be based on the theoretical symmetries in biology and on their critical instability along evolution. Our hypothesis deeply modifies the tools and concepts used in physical theorizing, when adapted to biology. In particular, we argue that causality has to be understood differently, and we discuss two notions to do so: differential causality and enablement. In this context constraints play a key role: on one side, they restrict possibilities, on the other, they enable biological systems to integrate changing constraints in their organization, by correlated variations, in un-prestatable ways. This corresponds to the formation of new phenotypes and organisms.

    Keywords: Conservation properties, symmetries, biological causality, phase space, unpredictability, phylogenetic drift, enablement

  2. No entailing laws, but enablement in the evolution of the biosphere

    No entailing laws, but enablement in the evolution of the biosphere

    Genetic and Evolutionary Computation Conference

    The evolution of life marks the end of a physics world view of law entailed dynamics. We discuss the notions of causation and of enablement.


    Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phe- notypes, niches, ecosystems. We wish to argue that the evo- lution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon dis- cussing the variability of the very ”contexts of life”: the in- teractions between organisms, biological niches and ecosys- tems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of time the ”niches” which constitute the boundary conditions on selec- tion. More generally, by the mathematical unprestatability of the ”phase space” (space of possibilities), no laws of mo- tion can be formulated for evolution. We call this radical emergence, from life to life. The purpose of this paper is the integration of variation and diversity in a sound concep- tual frame and situate unpredictability at a novel theoretical level, that of the very phase space. Our argument will be carried on in close comparisons with physics and the mathematical constructions of phase spaces in that discipline. The role of (theoretical) symmetries as invariant preserving transformations will allow us to under- stand the nature of physical phase spaces and to stress the differences required for a sound biological theoretizing. In this frame, we discuss the novel notion of ”enablement”. Life lives in a web of enablement and radical emergence. This will restrict causal analyses to differential cases (a difference that causes a difference). Mutations or other causal differ- ences will allow us to stress that ”non conservation princi- ples” are at the core of evolution, in contrast to physical dynamics, largely based on conservation principles as sym- metries. Critical transitions, the main locus of symmetry changes in physics, will be discussed, and lead to ”extended criticality” as a conceptual frame for a better understanding of the living state of matter.

    Keywords: conservation properties, symmetries, biological causality

    Longo, G., Maël Montévil, and S. Kauffman. 2012. “No Entailing Laws, but Enablement in the Evolution of the Biosphere.” In Genetic and Evolutionary Computation Conference, GECCO’12. New York, NY, USA: GECCO’12; ACM. https://doi.org/10.1145/2330784.2330946
    Manuscript Citation Publisher Full text

See all tags.