Jump to main content

Contents tagged “emergence”

There are 2 contents with the tag “emergence”:

  1. Possibility spaces and the notion of novelty: from music to biology

    Possibility spaces and the notion of novelty: from music to biology

    Synthese


    What is a biological novelty? Is it possible to coin a sound concept of new possibility? What articulation between the concepts of novelty and function?

    Manuscript Citation Publisher Full text

    Abstract:

    We provide a new perspective on the relation between the space of description of an object and the appearance of novelties. One of the aims of this perspective is to facilitate the interaction between mathematics and historical sciences. The definition of novelties is paradoxical: if one can define in advance the possibles, then they are not genuinely new. By analyzing the situation in set theory, we show that defining generic (i.e., shared) and specific (i.e., individual) properties of elements of a set are radically different notions. As a result, generic and specific definitions of possibilities cannot be conflated. We argue that genuinely stating possibilities requires that their meaning has to be made explicit. For example, in physics, properties playing theoretical roles are generic; then, generic reasoning is sufficient to define possibilities. By contrast, in music, we argue that specific properties matter, and generic definitions become insufficient. Then, the notion of new possibilities becomes relevant and irreducible. In biology, among other examples, the generic definition of the space of DNA sequences is insufficient to state phenotypic possibilities even if we assume complete genetic determinism. The generic properties of this space are relevant for sequencing or DNA duplication, but they are inadequate to understand phenotypes. We develop a strong concept of biological novelties which justifies the notion of new possibilities and is more robust than the notion of changing description spaces. These biological novelties are not generic outcomes from an initial situation. They are specific and this specificity is associated with biological functions, that is to say, with a specific causal structure. Thus, we think that in contrast with physics, the concept of new possibilities is necessary for biology.

    Keywords: Novelty, Possibility space, Biological functions, Organization, Emergence

    Citation:
  2. The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms

    The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms

    Progress in Biophysics and Molecular Biology


    We propose a biological default state of proliferation with variation and motility by analogy with inertia. Then, quiescence requires an explanation.

    Manuscript Citation Publisher Full text

    Abstract:

    Abstract The principle of inertia is central to the modern scientific revolution. By postulating this principle Galileo at once identified a pertinent physical observable (momentum) and a conservation law (momentum conservation). He then could scientifically analyze what modifies inertial movement: gravitation and friction. Inertia, the default state in mechanics, represented a major theoretical commitment: there is no need to explain uniform rectilinear motion, rather, there is a need to explain departures from it. By analogy, we propose a biological default state of proliferation with variation and motility. From this theoretical commitment, what requires explanation is proliferative quiescence, lack of variation, lack of movement. That proliferation is the default state is axiomatic for biologists studying unicellular organisms. Moreover, it is implied in Darwin’s “descent with modification”. Although a “default state” is a theoretical construct and a limit case that does not need to be instantiated, conditions that closely resemble unrestrained cell proliferation are readily obtained experimentally. We will illustrate theoretical and experimental consequences of applying and of ignoring this principle.

    Keywords: Default state, Theory, Organicism, Emergence, Mathematical symmetries, Biological organization

    Citation:

    Soto, Ana M., G. Longo, Maël Montévil, and Carlos Sonnenschein. 2016. “The Biological Default State of Cell Proliferation with Variation and Motility, a Fundamental Principle for a Theory of Organisms.” Progress in Biophysics and Molecular Biology 122 (1): 16–23. https://doi.org/10.1016/j.pbiomolbio.2016.06.006

See all tags.