Jump to main content

Contents tagged “organization”

There are 12 contents with the tag “organization”:

  1. Entropies and the Anthropocene crisis

    Entropies and the Anthropocene crisis

    AI and society


    Entropy is a transversal notion to understand the Anthropocene, from physics to biology and social organizations. For the living, it requires a counterpart: anti-entropy.

    Abstract

    The Anthropocene crisis is frequently described as the rarefaction of resources or resources per capita. However, both energy and minerals correspond to fundamentally conserved quantities from the perspective of physics. A specific concept is required to understand the rarefaction of available resources. This concept, entropy, pertains to energy and matter configurations and not just to their sheer amount.
    However, the physics concept of entropy is insufficient to understand biological and social organizations. Biological phenomena display both historicity and systemic properties. A biological organization, the ability of a specific living being to last over time, results from history, expresses itself by systemic properties, and may require generating novelties The concept of anti-entropy stems from the combination of these features. We propose that Anthropocene changes disrupt biological organizations by randomizing them, that is, decreasing anti-entropy. Moreover, second-order disruptions correspond to the decline of the ability to produce functional novelties, that is, to produce anti-entropy.

    Keywords: entropy, anti-entropy, resources, organization, disruption, Anthropocene

  2. Sciences et entropocène. Autour de Qu’appelle-t-on panser ? de Bernard Stiegler

    Sciences et entropocène. Autour de Qu’appelle-t-on panser ? de Bernard Stiegler

    EcoRev’


    Bernard Stiegler soulignait l’importance de la question de l’entropie, conduisant au concept d’entropocène. L’auteur introduit et illustre ce concept pour montrer sa pertinence d’un point de vue physique, biologique et social.

    Abstract

    En examinant le second tome de Qu’appelle-t-on panser (1), le théoricien de la biologie et épistémologue Maël Montévil, qui a collaboré avec Bernard Stiegler à la fois sur des questions théoriques et sur des expérimentations territoriales, s’arrête sur le rôle des sciences dans l’Anthropocène pour souligner leur difficulté à penser cette ère et, ce faisant, à prendre soin des vivants, humains et non-humains, des techniques et des sciences elles-mêmes. Stiegler soulignait l’importance de la question de l’entropie, conduisant au concept d’entropocène. L’auteur introduit et illustre ce concept pour montrer sa pertinence d’un point de vue physique, biologique et social. Ce faisant, il insiste sur la parenté mais aussi sur les différences entre ces phénomènes. Dans le cas des humains, les savoirs jouent un rôle central pour lutter contre l’entropie, et les sciences pourraient retrouver leur compte en contribuant au développement – urgent – de savoirs territoriaux.

  3. Conceptual and theoretical specifications for accuracy in medicine

    Conceptual and theoretical specifications for accuracy in medicine

    Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare


    Technological developments in genomics and other -omics originated the idea that precise measurements would lead to better therapeutic strategies. However, precision does not entail accuracy. Scientific accuracy requires a theoretical framework to understand the meaning of measurements, the nature...

    Abstract

    Technological developments in genomics and other -omics originated the idea that precise measurements would lead to better therapeutic strategies. However, precision does not entail accuracy. Scientific accuracy requires a theoretical framework to understand the meaning of measurements, the nature of causal relationships, and potential intrinsic limitations of knowledge. For example, a precise measurement of initial positions in classical mechanics is useless without initial velocities; it is not an accurate measurement of the initial condition. Conceptual and theoretical accuracy is required for precision to lead to the progress of knowledge and rationality in action. In the search for accuracy in medicine, we first outline our results on a theory of organisms. Biology is distinct from physics and requires a specific epistemology. In particular, we develop the meaning of biological measurements and emphasize that variability and historicity are fundamental notions. However, medicine is not just biology; we articulate the historicity of biological norms that stems from evolution and the idea that patients and groups of patients generate new norms to overcome pathological situations. Patients then play an active role, in line with the philosophy of Georges Canguilhem. We argue that taking this dimension of medicine into account is critical for theoretical accuracy.

    Keywords: Normativity, Organization, Personalized Medicine, Technology, theoretical biology

    Citation
    Montévil, Maël. n.d. “Conceptual and Theoretical Specifications for Accuracy in Medicine.” In Personalized Medicine in the Making: Philosophical Perspectives from Biology to Healthcare, edited by Chiara Beneduce and Marta Bertolaso. Human Perspectives in Health Sciences et Technology. Springer. https://www.springer.com/gp/book/9783030748036
    Manuscript Citation Publisher Full text
  4. Historicity at the heart of biology

    Historicity at the heart of biology

    Theory in Biosciences


    Most mathematical modeling in biology rely on the epistemology of physics. By contrast, we argue that historicity comes first in biology.

    Abstract

    Most mathematical modeling in biology relies either implicitly or explicitly on the epistemology of physics. The underlying conception is that the historicity of biological objects would not matter to understand a situation here and now, or, at least, historicity would not impact the method of modeling. We analyze that it is not the case with concrete examples. Historicity forces a conceptual reconfiguration where equations no longer play a central role. We argue that all observations depend on objects defined by their historical origin instead of their relations as in physics. Therefore, we propose that biological variations and historicity come first, and regularities are constraints with limited validity in biology. Their proper theoretical and empirical use requires specific rationales.

    Keywords: Historicity, Organization, Epistemology, Mathematical modeling, Constraints

  5. Possibility spaces and the notion of novelty: from music to biology

    Possibility spaces and the notion of novelty: from music to biology

    Synthese


    What is a biological novelty? Is it possible to coin a sound concept of new possibility? What articulation between the concepts of novelty and function?

    Abstract

    We provide a new perspective on the relation between the space of description of an object and the appearance of novelties. One of the aims of this perspective is to facilitate the interaction between mathematics and historical sciences. The definition of novelties is paradoxical: if one can define in advance the possibles, then they are not genuinely new. By analyzing the situation in set theory, we show that defining generic (i.e., shared) and specific (i.e., individual) properties of elements of a set are radically different notions. As a result, generic and specific definitions of possibilities cannot be conflated. We argue that genuinely stating possibilities requires that their meaning has to be made explicit. For example, in physics, properties playing theoretical roles are generic; then, generic reasoning is sufficient to define possibilities. By contrast, in music, we argue that specific properties matter, and generic definitions become insufficient. Then, the notion of new possibilities becomes relevant and irreducible. In biology, among other examples, the generic definition of the space of DNA sequences is insufficient to state phenotypic possibilities even if we assume complete genetic determinism. The generic properties of this space are relevant for sequencing or DNA duplication, but they are inadequate to understand phenotypes. We develop a strong concept of biological novelties which justifies the notion of new possibilities and is more robust than the notion of changing description spaces. These biological novelties are not generic outcomes from an initial situation. They are specific and this specificity is associated with biological functions, that is to say, with a specific causal structure. Thus, we think that in contrast with physics, the concept of new possibilities is necessary for biology.

    Keywords: Novelty, Possibility space, Biological functions, Organization, Emergence

  6. From the century of the genome to the century of the organism: New theoretical approaches

    From the century of the genome to the century of the organism: New theoretical approaches

    Progress in Biophysics and Molecular Biology, Special issue


    This focused issue of Progress in Biophysics and Molecular Biology is entitled "From the century of the genome to the century of the organism: New theoretical approaches." It was developed during Ana M. Soto’s tenure as Blaise Pascal Chair of Biology 2013-15 at the Ecole Normale Supérieure (ENS,...

    Abstract

    This focused issue of Progress in Biophysics and Molecular Biology is entitled "From the century of the genome to the century of the organism: New theoretical approaches." It was developed during Ana M. Soto’s tenure as Blaise Pascal Chair of Biology 2013-15 at the Ecole Normale Supérieure (ENS, Paris, France). Giuseppe Longo was the Pascal Chair host at the ENS. This ongoing theoretical was also used as the content of a 10 session course attended by graduate students and post-graduates, which took place at the National Museum of Natural History and at the ENS. The attendants of course encouraged the guest editors to make this material easily available, hence the origin of PBMB issue.

    Citation
    Soto, Ana M., G. Longo, Denis Noble, Nicole Perret, Maël Montévil, Carlos Sonnenschein, Matteo Mossio, Arnaud Pocheville, Paul-Antoine Miquel, and Su-Young Hwang. 2016. “From the Century of the Genome to the Century of the Organism: New Theoretical Approaches.” Progress in Biophysics and Molecular Biology, Special Issue 122 (1): 1–82. https://www.sciencedirect.com/journal/progress-in-biophysics-and-molecular-biology/vol/122/issue/1
    Citation Publisher Details
  7. Theoretical principles for biology: Variation

    Theoretical principles for biology: Variation

    Progress in Biophysics and Molecular Biology


    Biological variation should be given the status of a fundamental theoretical principle in biology. Variation goes with randomness, historicity and contextuality.

    Abstract

    Abstract Darwin introduced the concept that random variation generates new living forms. In this paper, we elaborate on Darwin’s notion of random variation to propose that biological variation should be given the status of a fundamental theoretical principle in biology. We state that biological objects such as organisms are specific objects. Specific objects are special in that they are qualitatively different from each other. They can undergo unpredictable qualitative changes, some of which are not defined before they happen. We express the principle of variation in terms of symmetry changes, where symmetries underlie the theoretical determination of the object. We contrast the biological situation with the physical situation, where objects are generic (that is, different objects can be assumed to be identical) and evolve in well-defined state spaces. We derive several implications of the principle of variation, in particular, biological objects show randomness, historicity and contextuality. We elaborate on the articulation between this principle and the two other principles proposed in this special issue: the principle of default state and the principle of organization.

    Keywords: Variability, Historicity, Genericity, Biological randomness, Organization, Theory of organisms

    Citation
    Montévil, Maël, Matteo Mossio, A. Pocheville, and G. Longo. 2016. “Theoretical Principles for Biology: Variation.” Progress in Biophysics and Molecular Biology 122 (1): 36–50. https://doi.org/10.1016/j.pbiomolbio.2016.08.005
    Manuscript Citation Publisher Full text
  8. Theoretical principles for biology: Organization

    Theoretical principles for biology: Organization

    Progress in Biophysics and Molecular Biology


    In the search of a theory of biological organisms, we propose to adopt organization as a theoretical principle and define it as closure of constraints.

    Abstract

    Abstract In the search of a theory of biological organisms, we propose to adopt organization as a theoretical principle. Organization constitutes an overarching hypothesis that frames the intelligibility of biological objects, by characterizing their relevant aspects. After a succinct historical survey on the understanding of organization in the organicist tradition, we offer a specific characterization in terms of closure of constraints. We then discuss some implications of the adoption of organization as a principle and, in particular, we focus on how it fosters an original approach to biological stability, as well as and its interplay with variation.

    Keywords: Theoretical principle, Organization, Constraints, Closure, Stability, Organicism

    Citation
    Mossio, Matteo, Maël Montévil, and G. Longo. 2016. “Theoretical Principles for Biology: Organization.” Progress in Biophysics and Molecular Biology 122 (1): 24–35. https://doi.org/10.1016/j.pbiomolbio.2016.07.005
    Manuscript Citation Publisher Full text
  9. Toward a theory of organisms: Three founding principles in search of a useful integration

    Toward a theory of organisms: Three founding principles in search of a useful integration

    Progress in Biophysics and Molecular Biology


    We articulate three principles for a theory of organisms proposed, namely: the default state the principle of variation and the principle of organization.

    Abstract

    Abstract Organisms, be they uni- or multi-cellular, are agents capable of creating their own norms; they are continuously harmonizing their ability to create novelty and stability, that is, they combine plasticity with robustness. Here we articulate the three principles for a theory of organisms, namely: the default state of proliferation with variation and motility, the principle of variation and the principle of organization. These principles profoundly change both biological observables and their determination with respect to the theoretical framework of physical theories. This radical change opens up the possibility of anchoring mathematical modeling in biologically proper principles.

    Keywords: Default state, Biological organization, Organizational closure, Variation, Individuation

    Citation
    Soto, Ana M., G. Longo, P.-A. Miquel, M. Montevil, Matteo Mossio, N. Perret, A. Pocheville, and Carlos Sonnenschein. 2016. “Toward a Theory of Organisms: Three Founding Principles in Search of a Useful Integration.” Progress in Biophysics and Molecular Biology 122 (1): 77–82. https://doi.org/10.1016/j.pbiomolbio.2016.07.006
    Manuscript Citation Publisher Full text
  10. The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms

    The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms

    Progress in Biophysics and Molecular Biology


    We propose a biological default state of proliferation with variation and motility by analogy with physics inertia. Then, quiescence requires an explanation.

    Abstract

    Abstract The principle of inertia is central to the modern scientific revolution. By postulating this principle Galileo at once identified a pertinent physical observable (momentum) and a conservation law (momentum conservation). He then could scientifically analyze what modifies inertial movement: gravitation and friction. Inertia, the default state in mechanics, represented a major theoretical commitment: there is no need to explain uniform rectilinear motion, rather, there is a need to explain departures from it. By analogy, we propose a biological default state of proliferation with variation and motility. From this theoretical commitment, what requires explanation is proliferative quiescence, lack of variation, lack of movement. That proliferation is the default state is axiomatic for biologists studying unicellular organisms. Moreover, it is implied in Darwin’s “descent with modification”. Although a “default state” is a theoretical construct and a limit case that does not need to be instantiated, conditions that closely resemble unrestrained cell proliferation are readily obtained experimentally. We will illustrate theoretical and experimental consequences of applying and of ignoring this principle.

    Keywords: Default state, Theory, Organicism, Emergence, Mathematical symmetries, Biological organization

  11. Biological organisation as closure of constraints

    Biological organisation as closure of constraints

    Journal of Theoretical Biology


    We characterize biological organization as a closure of constraints, where constraints are defined at a given time scale and are interdependent.

    Abstract

    We propose a conceptual and formal characterisation of biological organisation as a closure of constraints. We first establish a distinction between two causal regimes at work in biological systems: processes, which refer to the whole set of changes occurring in non-equilibrium open thermodynamic conditions; and constraints, those entities which, while acting upon the processes, exhibit some form of conservation (symmetry) at the relevant time scales. We then argue that, in biological systems, constraints realise closure, i.e. mutual dependence such that they both depend on and contribute to maintaining each other. With this characterisation in hand, we discuss how organisational closure can provide an operational tool for marking the boundaries between interacting biological systems. We conclude by focusing on the original conception of the relationship between stability and variation which emerges from this framework.

    Keywords: Biological organisation, Closure, Constraints, Symmetries, Time scales

    Citation
    Montévil, Maël, and Matteo Mossio. 2015. “Biological Organisation as Closure of Constraints.” Journal of Theoretical Biology 372 (May): 179–91. https://doi.org/10.1016/j.jtbi.2015.02.029
    Manuscript Citation Publisher Full text
  12. Randomness Increases Order in Biological Evolution

    Randomness Increases Order in Biological Evolution

    Computation, Physics and Beyond


    We revisit the analysis of anti-entropy. In particular, we analyze how randomness stemming from variability leads to the growth of biological organization.

    Abstract

    In this text, we revisit part of the analysis of anti-entropy in [4] and develop further theoretical reflections. In particular, we analyze how randomness, an essential component of biological variability, is associated to the growth of biological organization, both in ontogenesis and in evolution. This approach, in particular, focuses on the role of global entropy production and provides a tool for a mathematical understanding of some fundamental observations by Gould on the increasing phenotypic complexity along evolution. Lastly, we analyze the situation in terms of theoretical symmetries, in order to further specify the biological meaning of anti-entropy as well as its strong link with randomness.

    Keywords: Entropy Production, Biological Evolution, Irreversible Process, Combinatorial Complexity, Biological Organization

    Citation
    Longo, Giuseppe, and Maël Montévil. 2012. “Randomness Increases Order in Biological Evolution.” In Computation, Physics and Beyond, edited by Michael J. Dinneen, Bakhadyr Khoussainov, and André Nies, 7160:289–308. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_22
    Manuscript Citation Publisher Full text

See all tags.