Jump to main content

Articles of 2012

  1. From bottom-up approaches to levels of organization and extended critical transitions

    From bottom-up approaches to levels of organization and extended critical transitions

    Frontiers in Physiology


    Critical phenomena disrupt the mathematical determination at a given level by couplings between scales, leading to a new perspective on levels of organization.

    Abstract

    Biological thinking is structured by the notion of level of organization. We will show that this notion acquires a precise meaning in critical phenomena: they disrupt, by the appearance of infinite quantities, the mathematical (possibly equational) determination at a given level, when moving at an “higher” one. As a result, their analysis cannot be called genuinely bottom-up, even though it remains upward in a restricted sense. At the same time, criticality and related phenomena are very common in biology. Because of this, we claim that bottom-up approaches are not sufficient, in principle, to capture biological phenomena. In the second part of this paper, following the work of Francis Bailly, we discuss a strong criterium of level transition. The core idea of the criterium is to start from the breaking of the symmetries and determination at a “first” level in order to “move” at the others. If biological phenomena have multiple, <i>sustained</i> levels of organization in this sense, then they should be interpreted as <i>extended</i> critical transitions.

    Keywords: bottom-up, extended criticality, levels of organization, organism, renormalization, singularity

  2. The Inert vs. the Living State of Matter: Extended Criticality, Time Geometry, Anti-Entropy — an overview

    The Inert vs. the Living State of Matter: Extended Criticality, Time Geometry, Anti-Entropy — an overview

    Frontiers in Physiology


    The physical singularity of life phenomena is analyzed by a comparison with the theories of the inert with a focus on criticality, time, and anti-entropy.

    Abstract

    The physical singularity of life phenomena is analyzed by means of comparison with the driving concepts of theories of the inert. We outline conceptual analogies, transferals of methodologies and theoretical instruments between physics and biology, in addition to indicating significant differences and sometimes logical dualities. In order to make biological phenomenalities intelligible, we introduce theoretical extensions to certain physical theories. In this synthetic paper, we summarize and propose a unified conceptual framework for the main conclusions drawn from work spanning a book and several articles, quoted throughout.

    Keywords: criticality, biological time, anti-entropy, theoretical biology, symmetry, allometry, incompleteness